Chapter 7: Periodic Properties of the Elements

- Periodic table is arranged according to the repeating patterns of electron configuration
- Elements in the same column contain the same number of electrons in their valence orbital

7.1: Development of the Periodic Table

- Some elements can be found as elemental form in nature
- Early nineteenth century, advances in chemistry make it easier to isolate elements from their compound and therefore the number of known elements increase from 31 to 63 (1800-1865)
- In 1869, Dmitri Mendeleev and Lothar Meyer noted that the properties of elements recur periodically when arrange by increasing atomic mass
- Mendeleev is given credit because he also predict the unknown element that would fit in the hole
- Henry Moseley developed the concept of atomic number
 - He found that each element produces different X-ray frequency when shower with high-energy electrons

7.2: Effective Nuclear Charge

- Coulomb’s law tells that the strength of the interaction between two electrical charges depends on the magnitude of the charge and the distance between them
- Estimate the net attraction of each electron to the nucleus by considering how it interacts with the average environment created by the nucleus and other electrons
 - Allow the electron to be treated individually as if it were moving in a net electric field
 - The net electric field is treated as if it’s caused by the positively charged nucleus and is called effective nuclear charge (Z_{eff})
 - Effective nuclear charge is less than the actual nuclear charge (Z) because it includes the electron repulsion
 - $Z_{\text{eff}} = Z - S$
 - For multi-electron atom, energy of the electron with the same n value increase in proportion to the increasing l value
 - The lower energy of lower l value is due to the ineffectiveness of electron shield or screen
• Z_{eff} increase when move across any row of the periodic table
 o More positive in the nucleus with the same shielding
• The Z_{eff} change far less when go down in column than going across the row
 o The effectiveness of the electron decreases as the size of the electron core increase

7.3: Sizes of Atoms and Ions

• Bonding atomic radius – The distance separating the nuclei of atoms when they are chemically bonded to each other
• Each element is assigned with their own bonding atomic radius
• Bonding atomic radius between the same element is half the distance between the nuclei of each atom
• Periodic Trends in Atomic Radii
 o In each column (group), the atomic radii increase from top to bottom
 ▪ Results from the increase in principle quantum number of the outer electrons
 o In each row (period), the atomic radii decrease from left to right
 ▪ Results of the increasing effective nuclear charge
• Periodic Trends in Ionic Radii
 o Cations are smaller than their parent atoms
 o Anions are larger than their parent atoms
 o For ions carrying the same charge, size increases as we move down a column in the periodic table
 o Isoelectronic series is a group of ions all containing the same number of electrons
 ▪ E.g. O$^{2-}$, F$^-$, Na$^+$, Mg$^{2+}$, Al$^{3+}$
 ▪ In the isoelectronic series, the element with smallest atomic number have the largest ionic radius
 • High atomic number = higher positive = more attraction towards the electrons

7.4: Ionization Energy

• Ionization energy - The minimum energy needed to remove an electron
 o First ionization energy, I_1, is the energy needed to remove the first electron thus I_2 is the energy to remove the second electron and so one
• Variation in Successive Ionization Energies
 o $I_1 < I_2 < I_3$
After every removal of electron, the positive charge is constant and so is more concentrated on the remaining electrons thus become harder and harder to remove

- Big increase in ionization energy from the valence electron to the core electron
 - When move to the inner shell, it’s closer to the nucleus thus the effective nuclear charge increase and so is the ionization energy
 - Support the idea that only valence electron are involve in chemical bonding and reactions because the inner electron is too tightly bound to be lost or shared

Periodic Trends in First Ionization Energies

- Within each row (period), I₁ generally increases with increasing atomic number
 - The effective nuclear charge increase while the atomic radius decrease
- Within each column (group), the ionization energy generally decreases with increasing atomic number
 - Atomic radius increase while effective nuclear charge increase gradually thus the attraction between the nucleus and electron decreases
- Decrease of ionization energy from group 2 to group 13 because the third valence electron must occupy the p subshell which was empty
 - The p orbital have higher energy than the s orbital
- Decrease in ionization energy from group 15 to group 16 because the repulsion of paired electrons in the suborbital
 - Each p orbital is occupy by a single electron first which minimize the electron repulsion

Electron Configurations of Ions

- When electron is removed, it’s remove from the occupied orbital with the largest principle quantum number
 - Goes from the greatest l to the least l value
- When electron is added, it’s added from the unoccupied or partially occupied orbital with the lowest principle quantum number

7.5: Electron Affinities

- Electron affinity – energy change that occurs when electron is added to a gaseous atom
 - Show how much the atom wanted the electron
 - Usually negative (energy release)
- There are some exceptions in which the electron affinity is positive
 - Noble gas have positive electron affinity because it requires the electron to be in a higher-energy subshell which is highly unfavorable
 - Beryllium and Magnesium have a positive electron affinity because to add the electron, the electron must be add to the currently empty p subshell which is higher in energy level
- Nitrogen group have a lower electron affinity than the elements beside them because have each orbital filled singly with an electron

7.6: Metals, Nonmetals, and Metalloids

- H is a nonmetal even though it’s at the top left of the periodic table
- The more an element exhibits the physical and chemical properties of metals, the greater its metallic character
- Metals
 - Shiny luster, conduct heat and electricity, generally malleable and ductile
 - All metal except mercury are solid at room temperature (25°C)
 - Melting point can be low or high
 - Tends to have low ionization energy thus tend to form cations relatively easy
 - Metal in group 13 to 17 formed ion by either losing just electron from p orbital or from both p and s orbitals
 - Compound of metals and nonmetals tend to form ionic substance
 - Most metal oxides are basic
 - The oxide ion in the metal oxide reacts with water and form base
- Nonmetals
 - Vary greatly in appearance
 - Not lustrous, poor conductor of heat and electricity, generally have lower melting point than metal
 - Under normal condition, seven nonmetal exist as diatomic molecules
 - H₂, N₂, O₂, F₂, and Cl₂ as gas
 - Br₂ as liquid
 - I₂ as a volatile solid
 - Tend to form anions because of their electron affinity
 - Compound with only nonmetals are usually molecular substances
 - Most nonmetal are acidic
 - Reacts with water and form acid
- Metalloids
 - Can have properties of both metals and nonmetals
 - Have some properties of metals while lacking others and likewise
7.7: Group Trends for the Active Metals

- **Group 1: The Alkali Metals**
 - Soft metallic solid
 - Have low densities and melting points
 - Form 1+ ion
 - Only exist as compound in nature
 - Highly reactive
 - React with hydrogen in its hydride ion form, H^-
 - React violently with water
 - Highly exothermic
 - Possibly cause flame or explosion
 - The heavier members of the groups is more reactive because of their weaker hold of the electron
 - React with oxygen
 - Can form oxide, peroxide, or even superoxide
 - Emit characteristic color when placed in flame

- **Group 2: The Alkaline Earth Metals**
 - Harder, more dense, and higher melting point that the alkali metals
 - Reactivity increase from top to bottom
 - Form 2+ ion
 - Emit characteristic color when strongly heated in flame
 - 99% of calcium in human is found in the skeletal system

7.8: Group Trends for Selected Nonmetals

- **Hydrogen**
 - Nonmetal that occurs as a colorless diatomic gas under most conditions
 - Can be metallic under tremendous pressures
 - Can form both cation and anion
 - Have high ionization energy

- **Group 16: The Oxygen Group**
 - There's change from nonmetal to metal
 - Oxygen, sulfur, and selenium are typical nonmetals while tellurium is metalloid and polonium is metal
 - Oxygen is a colorless gas at room temperature while the others are solid
 - O_3 is ozone
 - Can be formed from O_2 in electrical discharges, such as lightning storm
- Less stable than O_2
- O_3 absorb certain wavelength of UV light
- Is a powerful oxidizing agent
 - Oxygen has great tendency to attract electrons so usually present as O^{2-}
 - Oxygen could also form peroxide (O_2^{2-}) and superoxide (O_2^-)
 - Often react with themselves to produce and oxide and O_2
 - Sulfur usually exist as S_8, a yellow solid
 - S_8 is sometimes just written as S(s)
 - Sulfur also have tendency to attract electron, although not as much as oxygen thus form sulfides, which contain the S^{2-} ion
 - Most sulfur in nature is present as metal sulfide

- **Group 17: The Halogens**
 - Comes from Greek *halos* and *gennao* which means “salt formers”
 - All are typical nonmetals
 - Melting and boiling points increase with increasing atomic number
 - Have highly negative electron affinities
 - Lighter members of the groups is more reactive

- **Group 18: The Noble Gases**
 - All monatomic
 - Very nonreactive
 - Have large first ionization energy
 - The ionization energy decrease from top to bottom
 - Was called inert gases because they were thought to completely be unable to form chemical compounds